A Large Language Model-Based Question An swering System for Online Public Administra tive Services
Abstract
Public administrative services are one of the key concerns for citizens; however, there are still numerous
procedures and issues that citizens encounter and need clarification on. This study aims to alleviate some of this burden on officials by developing a Question Answering System (QnA) to address inquiries about public administrative services. We present a framework for utilizing Large Language Models to develop and implement a QnA system on the Online Public Administrative Service Portal in Ha Giang Province. We also provide extensive experimental analysis to demonstrate the effectiveness of each component in the QnA system.
References
J. Martinez-Gil, “A survey on legal question–answering systems,” Computer Science Review, vol. 48, p. 100552,
G. Caldarini, S. F. Jaf, and K. McGarry, “A literature survey of recent advances in chatbots,” CoRR, vol. abs/2201.06657, 2022. [Online]. Available: https://arxiv.org/abs/2201.06657
S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Amatriain, and J. Gao, “Large language models: A survey,” 2024.
A. Torfi, R. A. Shirvani, Y. Keneshloo, N. Tavaf, and E. A. Fox, “Natural language processing advancements
by deep learning: A survey,” 2021. [Online]. Available: https://arxiv.org/abs/2003.01200
A. Pham Duy and H. Le Thanh, “A question-answering system for vietnamese public administrative services,” in Proceedings of the 12th SoICT, ser. SOICT ’23, 2023.
E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” CoRR, vol. abs/2106.09685, 2021.
S. Robertson and H. Zaragoza, “The probabilistic relevance framework: Bm25 and beyond,” FTIR, vol. 3, pp. 333–389, 01 2009.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2019. [Online]. Available: https://arxiv.org/abs/1810.04805
N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” 2019. [Online]. Available: https://arxiv.org/abs/1908.10084
N. Q. Duc, L. H. Son, N. D. Nhan, N. D. N. Minh, L. T. Huong, and D. V. Sang, “Towards comprehensive vietnamese rag and llms,” arXiv preprint arXiv:2403.01616, 2024.
X. Amatriain, “Prompt design and engineering: Introduction and advanced methods,” arXiv preprint arXiv:2401.14423, 2024.
S. Es, J. James, L. Espinosa-Anke, and S. Schockaert, “Ragas: Automated evaluation of retrieval augmented generation,” arXiv preprint arXiv:2309.15217, 2023.
C. Nguyen, S. Luu, T. Tran, A. Trieu, A. Dang, D. Nguyen, H. Nguyen, T. Pham, T. Pham, T.-T. Vo, D.-T. Dol, N. Khang, H. Nguyen, N.-C. Le, T.-T. Le, Q. Bui, P. Nguyen, H.-T. Nguyen, V. Tran, and L. Nguyen, “A summary of the alqac 2023 competition,” 10 2023, pp. 1–6.
M. Eibich, S. Nagpal, and A. Fred-Ojala, “Aragog: Advanced rag output grading,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.01037
L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei, and J. Wen, “A survey on llm based autonomous agents,” Frontiers of Computer Science, vol. 18, no. 6, Mar. 2024.