A Hybrid Spatial Fuzzy Inference and CNN Approach for Forecasting Changes in Remote Sensing
Abstract
Satellite images, captured by Earth observation satellites, provide crucial information for weather forecasting, aviation, natural resource management, and disaster response. This study presents a novel method for detecting changes in satellite cloud images, combining convolutional neural networks (CNNs) for feature extraction with a spatial complex fuzzy inference system (CFIS). The CNNs effectively capture color channel features in the image blurring and deblurring processes, while the CFIS models the spatiotemporal relationships in the data. Experiments conducted on a US Navy satellite image dataset demonstrate the effectiveness and stability of our proposed method, outperforming related studies
concerning of R-squared (R2) and root mean square error (RMSE) measures.
References
M. Mirbod, B. Rezaei, and M. Najafi, “Spatial change recognition model using artificial intelligence to remote
sensing,” Procedia Computer Science, vol. 217, pp. 62–71, 2023.
G. Cheng, Y. Huang, X. Li, S. Lyu, Z. Xu, H. Zhao, Q. Zhao, and S. Xiang, “Change detection methods for
remote sensing in the last decade: A comprehensive review,” Remote Sensing, vol. 16, no. 13, p. 2355, 2024.
B. Cardone, F. Di Martino, and V. Miraglia, “A novel fuzzybased remote sensing image segmentation method,” Sensors, vol. 23, no. 24, p. 9641, 2023.
R. Li and L. Pang, “Remote-sensing image data fusion processing technology based on multi-level fuzzy judgment,” Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 7243–7255, 2023.
E. J. Parelius, “A review of deep-learning methods for change detection in multispectral remote sensing images,” Remote Sensing, vol. 15, no. 8, p. 2092, 2023.
L. Zhang and L. Zhang, “Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities,” IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 2, pp. 270–294, 2022.
T. T. Nhi, P. V. Quân, and P. C. Đạt, “Ứng dụng kỹ thuật bộ mã tự động tích chập (convolutional autoencoder) trong khử nhiễu hình ảnh,” Tạp chí Khoa học Đại học Đông Á, vol. 1, no. 1, pp. 75–80, 2022.
G. Selvachandran, S. G. Quek, L. T. H. Lan, N. L. Giang, W. Ding, M. Abdel-Basset, V. H. C. De Albuquerque et al.,
“A new design of mamdani complex fuzzy inference system for multiattribute decision making problems,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 716–730, 2019.
L. T. H. Lan, T. M. Tuan, T. T. Ngan, N. L. Giang, V. T. N. Ngoc, P. Van Hai et al., “A new complex fuzzy inference
system with fuzzy knowledge graph and extensions in decision making,” Ieee Access, vol. 8, pp. 164 899–164 921,
T. M. Tuan, L. T. H. Lan, S.-Y. Chou, T. T. Ngan, L. H. Son, N. L. Giang, and M. Ali, “M-cfis-r: Mamdani complex
fuzzy inference system with rule reduction using complex fuzzy measures in granular computing,” Mathematics, vol. 8, no. 5, p. 707, 2020.
G. L.T., T. T.M., S. L.H., and T. P.B.T., “Dự đoán ảnh mây vệ tinh với mô hình suy diễn mờ phức không gian – thời gian,” in 2020 Hội thảo Quốc gia lần thứ XXIII Một số vấn đề chọn lọc của Công nghệ thông tin và Truyền thông, 2020, pp. 1–8.
N. L. Giang, N. Van Luong, L. T. H. Lan, T. M. Tuan, N. T. Thang et al., “Adaptive spatial complex fuzzy inference systems with complex fuzzy measures,” IEEE Access, vol. 11, pp. 39 333–39 350, 2023.
L. T. Giang, L. H. Son, N. L. Giang, T. M. Tuan, N. V. Luong, M. D. Sinh, G. Selvachandran, and V. C. Gerogiannis,
“A new co-learning method in spatial complex fuzzy inference systems for change detection from satellite
images,” Neural Computing and Applications, vol. 35, no. 6, pp. 4519–4548, 2023.
T. T. Nhi, P. V. Quân, and P. C. Đạt, “Ứng dụng kỹ thuật bộ mã tự động tích chập (convolutional autoencoder) trong khử nhiễu hình ảnh,” Tạp chí Khoa học Đại học Đông Á, vol. 1, no. 1, pp. 75–80, 2022.
Z. Shen, Y. Zhang, J. Lu, J. Xu, and G. Xiao, “Seriesnet: a generative time series forecasting model,” in 2018 international joint conference on neural networks (IJCNN). IEEE, 2018, pp. 1–8.
L. H. Son and P. H. Thong, “Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences,” Applied Intelligence, vol. 46, pp. 1–15, 2017.
B. Du, L. Ru, C. Wu, and L. Zhang, “Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 9976–9992, 2019.