Thỏa hiệp phẩm chất BER-độ phức tạp trong các hệ thống chuyển tiếp vô tuyến MIMO-SDM-AF sử dụng tách tín hiệu kết hợp rút gọn dàn
Abstract
Relay communication systems have attracted great attention recently due to their advantages in coverage extension, improved signal quality as well as increased end-to-end throughput. In the multiple-input multiple-output (MIMO) spatial-division multiplexing (SDM) amplify-and-forward (AF) relay communication systems, the bit error rate (BER) performance of the system depends significantly on the signal detector at the destination. However, optimal detectors which provide the minimum BER often require probitive complexity. In order to make it possible for practical implementation, we propose to apply the lattice reduction (LR) to the linear detectors at the destination receiver in order to balance the trade-off between their detection performance and computational complexity. Our analysis shows that the LR-aided (LRA) linear detectors using zero forcing (ZF) and minimum mean square error (MMSE) can achieve signifcant improvement in BER performance over the linear ZF and MMSE detectors while requiring the same complexity order.
References
H. K. BIZAKI, MIMO systems, theory and applications, Publisher: InTech, Apr. 2011.
P. W. WOLNIALSKY, G. J. FOSCHINI, G. D. GOLDEN, and R. A. VALENZUELA, “VBLAST, an architecture for realizing very high data rates over the richscattering wireless channel,” URSI Int. Symp. on Signals, Syst and Electron. (ISSSE'98), Pisa, Italy, pp. 295–300, Sept. 1998.
S. M. ALAMOUTI, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
M. T. LE, V. D. NGO, H. A. MAI, X. N. TRAN, and M. DI RENZO, “Spatially modulated orthogonal space-time block codes with non-vanishing determinants,” IEEE Trans. Commun., vol. 62, no. 1, pp. 85–99, Jan. 2014.
T. T. BUI, X. N. TRAN, and T. FUJINO, “MSE based antenna selection for MIMO-SDM systems,” Proc. 2008 Int. Conf. on Advanced Technol. for Commun., pp. 108–112, Oct. 2009.
A. BLETSAS, A. KHISTI, D. P. REED, A. LIPPIMAN, and et al., “A simple cooperative diversity method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659–672, 2006.
X. N. TRAN, V. H. NGUYEN, T. T. BUI, and T. C. DINH, “Distributed relay selection for MIMO-SDM cooperative networks,” IEICE Trans. Commun., vol. E95–B(4), pp. 1170–1179, Apr. 2012.
D. H. VU, Q. T. DO, X. N. TRAN, and V. N. Q. BAO, “Improved relay selection for MIMO-SDM cooperative communication,” Int. Conf. on Green and Human Inform. Technol. 2013, Hanoi, Vietnam, Feb. 27–Mar. 1, 2013.
W. GUAN and H. LUO, “Joint MMSE transceiver design in non-regenerative MIMO relay systems,” IEEE Commun., Lett., vol. 12, no. 7, July 2008.
T. V. CANH and T. X. NAM, “Combined relay selection and optimization for cooperative MIMO networks,” J. Sci. and Technol., Le Quy Don Tech. Univ., no. 3, Nov. 2013.
C. WINDPASSINGER, L. LAMPE, R. F. H. FISCHER, and T. HEHN, “A performance study of MIMO detectors,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2004–2008, Aug. 2006.
A. M. ELSHOKRY, Complexity and performance evaluation of detection schemes for spatial multiplexing MIMO systems, Master of Sci. in Elect. Eng., Islamic Univ., Gaza, Palestine, Jan. 2010.
X. N. TRAN, A. T. LE, and T. FUJINO, “Performance comparison of MMSE-SIC and MMSE-ML multiuser detectors in a STBC-OFDM system,” 2005 IEEE 16th Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC 2005), vol. 2, pp. 1050–1054, 11–14 Sept. 2005.
H. NEGISHI, W. HOU, and T. FUJINO, “An MMSE detector applying reciprocal-lattice reduction in MIMO systems,” 2010 Int. Conf. 2010 Int. Conf. on Advanced Technol. for Commun. (ATC 2010), pp. 74–79, 20–22 Oct. 2010.
D. WÜBBEN, R. BÖHNKE, V. KÜHN, and K. D. KAMMEYER, “Near-maximum-likelihood detection of MIMO systems using mmse-based lattice reduction,” 2004 IEEE Int. Conf. on Commun., Paris, vol. 2, pp. 798–802, June 2004.
A. K. LENSTRA, H. W. LENSTRA, and L. LOVÁSZ, “Factoring polynomials with rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, Dec. 1982.
E. AGRELL, T. ERIKSSON, A. VARDY, and K. ZEGER, “Closest point search in lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.
H. YAO and G. W. WORNELL, “Lattice-reduction-aided detectors for MIMO communication systems,” IEEE Global Commun. Conf. (GLOBECOM'02), vol. 1, pp. 424–428, Nov. 2002.
A. M. M. TAHERZADEH and A. K. KHANDANI, “LLL lattice-basis reduction achieves maximum diversity in MIMO systems,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Adelaide, Australia, Sept.4–9, 2005.
B. HASSIBI, “An efficient square-root algorithm for BLAST,” Proc. in 2000 IEEE Int. Conf. on Acoustics, Speech and Signal, vol. 2, pp. II737–II740, vol. 2, 2000.
D. N. TIEN, X. N. TRAN, and T FUJINO, “Layer error characteristics of lattice-reduction aided V-BLAST detectors,” 2006 IEEE 17th Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC 2006), pp. 1–5, 11–14 Sept. 2006.
C. WINDPASSINGER and R. F. H. FISCHER, “Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction,” Proc. in 2003 IEEE on Inform. Theory Workshop, pp. 345–348, 31 Mar.–4 Apr. 2003.
F. HASEGAWA, J. LUO, K. R. PATTIPATI, P. WILLETT, and D. PHAM, “Speed and accuracy comparision of techniques for multiuser detection in synchronous CDMA,” IEEE Trans. Commun., vol. 54, no. 4, pp. 540–545, Apr. 2004.
R. BÖHNKE, D. WÜBBEN, V. KÜHN, and K. D. KAMMEYER, “Reduced complexity MMSE detection for BLAST architectures,” Proc. in IEEE on Globecom, San Francisco, California, USA, Dec. 2003.
Y. H. GAN, C. LING, and W. H. MOW, “Complex lattice reduction algorithm for low-complexity full-diversity MIMO detection,” Proc. in IEEE Trans. on Signal, vol. 57, no. 7, pp. 2701–2710, July 2009.
G. H. GOLUB and C. F. VAN LOAN, Matrix computations, Johns Hopkins studies in the mathematical sciences, Hardcover, Dec. 27, 2012.